🪼 Penerapan Turunan Dalam Bidang Ekonomi
ViewPenerapan Aplikasi Turunan MATHEMATIC 2012 at University of Brawijaya. Penerapan Aplikasi Turunan pada Ekonomi Setiap bidang ilmu mempunyai bahasa sendiri-sendiri. Tentu saja ini
Penerapanturunan fungsi trigonometri untuk menentukan. Contoh Soal Trigonometri Lengkap. penerapan konsep trigonometri dalam kegiatan sehari hari. 2018 - makalah penerapan matematika dalam kehidupan trigonometri merupakan alat utama ilmu bidang ekonomi menggunakan konsep fungsi untuk memprediksikan produksi'
Dalamkaitannya dengan konsep nilai marginal akan dibahas penerapan turunan dalam pembentukan fungsi atau perhitungan nilai marginal dari berbagai variabel ekonomi. 5. Aplikasi Turunan Menentukan Biaya Marginal Pada bidang ekonomi fungsi turunan dipakai untuk mencari biaya marjinal, yaitu dengan cara menurunkannya dari persamaan biaya total.
ContohSoal: Aplikasi Turunan Di Bidang Ekonomi Turunan atau diferensial dipakai sebagai sebuah alat untuk menyelesaikan berbagai permasalah yang dijumpai di dalam bidang geometri dan mekanika. Format file: JPEG: Ukuran file: 1.5mbTanggal pembuatan soal: Juli 2019 : Jumlah soal Aplikasi Turunan Di Bidang Ekonomi: 181 Halaman
Videoini berisi penjelasan tentang turunan sederhana dalam bidang ekonomi.#matematika #mathematics #math #maths #ekonomi #economics #economy #matematikaekon
Berisipeta yang menunjukkan letak bidang pada skala yang lebih kecil Arahan Peraturan Zonasi/Ketentuan Umum Peraturan Zonasi (APZ/KUPZ) Berisi informasi terkait Arahan/Ketentuan Umum Peraturan Zonasi pada kawasan/zona dalam delineasi lokasi usulan kegiatan pemanfaatan ruang Koordinat batas bidang rencana lokasi kegiatan No. X Y 1 2
Contohsoal aplikasi turunan fungsi dalam bidang ekonomi. X + y = 5. 5 j i ka d i k etahui fungsi b i a y a tot a l dari sua t u p e rusa h a a n ad a l ah. Fungsi pertumbuhan merupakan salah satu contoh aplikasi fungsi eksponen dalam bidang ekonomi. 31+ Contoh Soal Penerapan Limit Dalam Bidang Ekonomi . Contoh Soal Aplikasi Turunan Dalam
Turunanpertama : Pajak '= 264 − 101 t= 0. t 10 = 26 4. 4 t= 260 t= 65. Penyelesaian : Ambil y(t) sebagai jumlah uang (modal tambah bunga) pada saat t. Maka laju pertambahan perubahan jumlah uang pada saat t diberikan oleh : dy dt= 8. 100 y Jelaslah bahwa persamaan ini adalah persamaan diferensial terpisah. Sehingga: y(t)=y( 0 )e(1008 )t
Dibidang ekonomi, turunan dapat digunakan untuk merepresentasikan biaya marginal (marginal cost) dan pendapatan marginal (marginal revenue) dalam produksi atau penjualan sebuah produk. Berikut diberikan beberapa definisi di bidang ekonomi. DEFINISI. Fungsi biaya total (Total Cost) adalah total biaya yang dikeluarkan dalam memproduksi barang.
TitikEkstrem (Maksimum/minimum) 3. Titik Belok. Mengidentifikasi kecekungan fungsi, apakah cekung ke atas atau ke bawah. Sedangkan, penerapan diferensial (turunan) dalam ilmu bisnis & ekonomi (yang dipelajari) adalah sebagai berikut: 1. Kemonotonan. 2. Titik Ekstrem.
Untukmengetahui penerapan turunan pada bidang ekonomi 2. Untuk mengetahui hal-hal pada bidang ekonomi yang dapat ditentukan/dihitung menggunakan rumus turunan. 5 BAB II PEMBAHASAN A) Turunan A. Konsep Turunan Konsep turunan sejatinya bisa kita pahami dengan mengingat kembali konsep garis singgung, kecepatan rerata dan kecepatan sesaat, laju
RpL2f. PENERAPAN TURUNAN PARSIAL DI BIDANG EKONOMI April 8th, 2017 Pada post kali ini akan diberikan beberapa contoh bagaimana turunan parsial diterapkan dalam bidang ekonomi. Menentukan permintaan marjinal Misalkan A dan B merupakan dua buah produk yang memiliki hubungan satu sama lain dalam hal penggunaannya. Misalkan persamaan permintaan A dan B masing-masing adalah qA = fpA,pB dan qB = fpA,pB, dengan pA adalah harga per unit produk A dan pB adalah harga per unit produk B. Maka terdapat empat macam permintaan marjinal masing-masing produk terhadap harga, yaitu Contoh 1 Misalkan permintaan terhadap produk A dan produk B memenuhi persamaan berikut. Tentukan permintaan marjinal A terhadap harga per unit B dan permintaan marjinal B terhadap harga per unit A ketika harga per unit A Rp 0,5 dan harga per unit B Rp 1. Jawab qA = 200 pA-3pB-2 sehingga qB = 400 pA-1pB-3 sehingga Substitusikan pA = 0,5 dan pB = 1 ke dalam kedua turunan partial di atas, diperoleh Jadi, permintaan marjinal A terhadap harga per unit B adalah -50 unit/rupiah dan permintaan marjinal B terhadap harga per unit A adalah -100 unit/rupiah. Menentukan elastisitas permintaan parsial Misalkan A dan B merupakan dua buah produk yang memiliki hubungan satu sama lain dalam hal penggunaannya, entah A dan B ini dua produk yang bersifat komplementer ataupun yang bersifat saling menggantikan substitusi. Misalkan persamaan permintaan A dan B masing-masing adalah qA = fpA,pB dan qB = fpA,pB, dengan pA adalah harga per unit produk A dan pB adalah harga per unit produk B. Elastisitas harga-permintaan dan elastisitas silang-permintaan masing-masing produk didefinisikan sebagai berikut. dengan ηA = elastisitas harga-permintaan produk A ηB = elastisitas harga-permintaan produk B ηAB = elastisitas silang-permintaan produk A terhadap harga produk B ηBA = elastisitas silang-permintaan produk B terhadap harga produk A Jika ηAB > 0 dan ηBA > 0 untuk pA dan pB tertentu maka kedua produk tersebut saling menggantikan. Jika ηAB 0, memeriksa tanda aljabar ηAB dan ηBA dapat dilakukan cukup dengan memeriksa tanda aljabar masing-masing turunan parsial. Perhatikan bahwa Karena kedua turunan parsial tersebut negatif, kita simpulkan A dan B bersifat komplementer. Tautan sementara Latihan Turunan Parsial Latihan Elastisitas Permintaan Latihan Penerapan Turunan Parsial di Bidang Ekonomi Tagging elastisitas harga, elastisitas permintaan, elastisitas silang, permintaan marjinalMost visitors also read Tinggalkan Balasan
TURUNAN PARSIAL & MULTIVARIABEL DAN APLIKASINYA DALAM EKONOMI Proses penurunan sebuah fungsi yang merupakan penentuan limit suatu kuosien diferensi dalam pertambahan variable bebasnya sangat kecil atau mendekati nol disebut dengan Diferensiasi. Adapun hasil turunan yang diperoleh dari proses diferensiasi itulah yang disebut dengan derivatif y/x atau dy/dx. A. Kaidah diferensiasi Terdapat beberapa kaidah yang paling sering digunakan dalam pendiferensiasian, di antaranya 1. Diferensiasi konstanta k = konstanta Jika y = k Maka y′ = 0 contoh y = 4 turunan y′ = 0 2. Diferensiasi pangkat pangkat Jika y = xn maka y′ = nxn-1 contoh y = x5 turunan y′ = n. X n-1 y′ = 5 . x 5-1 y′ = 5x4 3. Diferensiasi perkalian Jika y = kv di mana v = hx , k = konstanta maka y′ = k . v′ contoh y = 2x5 k = 2 v = x5 maka v′ = 5x5-1 = 5x4 turunan y′ = k . v′ → y′ = 2 5x4 y′ = 10x4 4. Diferensiasi penjumlahan & pengurangan Penjumlahan fungsi Jika y = u + v di mana u = gx , v = hx maka y′ = u′ + v′ contoh y = 2x5 + x2 u = 2 x5 maka u′ = = 10x4 v = x2 maka v′ = 2x2-1 = 2x turunan y′ = u′ + v′ → y′ = 10x4 + 2x Pengurangan fungsi Jika y = u - v di mana u = gx , v = hx maka y′ = u′ - v′ contoh y = 2x5 - x2 u = 2 x5 maka u′ = = 10x4 v = x2 maka v′ = 2x2-1 = 2x turunan y′ = u′ - v′ → y′ = 10x4 - 2x B. Turunan dari turunan Contoh y = fx = 4x3 - 6x2 + 3x – 8 y′ = f′x = 12x2 - 6x + 3 y′′ = f′′x = 24x – 6 y′′′ = f′′′x = 24 yIV = fIVx = 0 C. Hubungan Antara Fungsi dan Turunannya 1. Titik Ekstrim Fungsi Parabolik Yang digunakan adalah turunan pertama y′ = f′x dan turunan kedua y′′ = f′′x. Turunan pertama digunakan untuk menentukan letak titik ekstrim. Jika f′x = 0 maka y = fx berada pada titik ekstrimnya. Turunan kedua digunakan untuk menentukan jenis titik ekstrimnya. Jika f′′x 0 maka titik ekstrimnya minimum dan kurvanya berbentuk parabola terbuka ke atas. Contoh Tentukan titik ekstrim dan koordinatnya dari fungsi y = 6x2 - 8x + 1! Penyelesaian y = 6x2 - 8x + 1 → f′x = 12x – 8 f′′x = 12 > 0 minimum-terbuka ke atas koordinat y′ = 0 → 12x – 8 = 0 → x = 8/12 = 0,67 x = 0,67 → y = 60,672 - 80,67 + 1 = -1,66 jadi, titik minimum kurva tersebut terdapat pada koordinat 0,67; -1,66 2. Titik Ekstrim dan Titik Belok Fungsi Kubik Yang digunakan adalah turunan pertama y′ = f′x dan turunan kedua y′′ = f′′x. Turunan pertama digunakan untuk menentukan letak titik ekstrim. Jika f′x = 0 maka y = fx berada pada titik ekstrimnya. Turunan kedua digunakan untuk menentukan jenis titik ekstrim dan letak titik beloknya. Jika f′′x 0 pada y′ = 0, maka titik ekstrimnya minimum. Jika y′′ = 0 maka y = fx berada pada titik beloknya. Contoh Tentukan titik ekstrim dan titik belok dari fungsi y = x3 - 5x2 + 3x - 5! Penyelesaian y = x3 - 5x2 + 3x – 5 → f′x = 3x2 – 10x + 3 f′′x = 6x – 10 syarat titik ekstrim y′ = 0 → 0 = 3x2 – 10x + 3 x1 = 3 x2 = 0,3 untuk x = x1 = 3 → y = x3 - 5x2 + 3x – 5 y = 33 – 532 + 33 – 5 = -14 y′′ = 6x – 10 y′′ = 63 – 10 = 8 8>0...minimum untuk x = x1 = 0,3 → y = x3 - 5x2 + 3x – 5 y = 0,33 – 50,32 + 30,3 – 5 = -4,5 y′′ = 6x – 10 y′′ = 60,3 – 10 = -8,2 -8,2 syarat titik belok y′′ = 0 → 0 = 6x – 10 x = 1,67 y = x3 - 5x2 + 3x – 5 y = 1,673 – 51,672 + 31,67 – 5 = -9,27 y′ = 3x2 – 10x + 3 y′ = 31,672 – 101,67 + 3 = -5,33 jadi, fungsi kubik tersebut berada pada titik minimum di koordinat 3,-14 dan titik maksimum pada koordinat 0,3;-4,5 serta titik belok pada koordinat 1,67;-9,27. D. Turunan Fungsi Multivariabel Prinsip dan kaidah turunannya sama dengan fungsi bervariabel bebas tunggal, hanya saja pada turunan fungsi multivariable ini akan ditemui turunan parsial turunan bagian demi bagian dan turunan total. Pada fungsi multivariable, karena variable bebasnya lebih dari satu macam maka turunan yang akan dihasilkan juga lebih dari satu macam. Bentuk umumnya Jika y = f x,y maka turunannya 1. Turunan y terhadap x → y / x 2. Turunan y terhadap z → y / z Sehingga 1. y = fx,z a. fx x,z =y′x = x′ b. fz x,z = y′z = z′ y′ = x′ + z′ 2. p = fq, r, s a. fq q, r, s = p′q = q′ b. fr q, r, s = p′r = r′ c. fs q, r, s = p′s = s′ p′ = q′ + r′ + s′ 3. y = fx,z fx x,z =y′x = x′ fz x,z = y′z = z′ y = fx =y′ = x′ z′ = y′x + y′z x′ Notes v y′x, y′z, p′q, p′r, dan p′s disebut turunan parsial. v y′ disebut turunan fungsi variabel tunggal v z′ disebut turunan total Contoh Carilah turunan parsial dan turunan total dari fungsi Z = fX,Y = 2X5 – 4Y + 10 dan Y = 2X + 3 Diketahui Z = fX,Y = 2X5 – 4Y + 10 Y = 2X + 3 Ditanya ZX….? ZY….? z′ ….? Penyelesaian v Turunan Parsial ZX = Z′x = 10X4 ZY = Z′y = -4 y′ = 2 v Turunan Total z′ = Z′x + Z′y y′ = 10X4 + -42 = 10X4 - 8 E. Penerapan Konsep Turunan Parsial 1 Variabel Dalam ekonomi 1. Elastisitas Bentuk umum η = Ey = lim = y′ . x Ex x→0 y Macam-macam elastisitas a Elastisitas Permintaan Adalah suatu koefisien yang menjelaskan tentang besarnya perubahan jumlah barang yang diminta akibat adanya perubahan harga rasio antara persentase perubahan jumlah barang yang diminta terhadap persentase perubahan harga. Jika Qd = fP maka elastisitas permintaannya adalah ηd = %Qd = EQd = lim = Q′d . P %P EP P→0 Qd jika ηd > 1 maka elastik, jika ηd 1 ...... elastik jadi, dari kedudukan P = 20, harga akan naik turun sebesar 1% sehingga jumlah barang yang diminta akan berkurang bertambah sebanyak 2%. Catatan dalam elastisitas permintaan, untuk menentukan jenis elastisitas yang dibandingkan adalah angka hasil perhitungan sehingga tanda yang dihasilkan +/- dapat diabaikan karena tanda tersebut hanya mencerminkan hukum permintaan bahwa jumlah yang diminta bergerak berlawanan arah dengan harga. Fungsi permintaan juga sering dinotasikan dengan persamaan D = fP. b Elastisitas Penawaran Adalah suatu koefisien yang menjelaskan tentang besarnya perubahan jumlah barang yang ditawarkan akibat adanya perubahan harga rasio antara persentase perubahan jumlah barang yang ditawarkan terhadap persentase perubahan harga. Jika Qs = fP maka elastisitas penawarannya adalah ηs = %Qs = EQs = lim = Q′s . P %P EP P→0 Qs jika ηs > 1 maka elastik, jika ηs 1 ...... elastik jadi, dari kedudukan P = 20, harga akan naik sebesar 1% sehingga jumlah barang yang ditawarkan akan bertambah sebanyak 2%. c Elastisitas Produksi Adalah suatu koefisien yang menjelaskan tentang besarnya perubahan jumlah keluaran output yang dihasilkan akibat adanya perubahan jumlah masukan input yang digunakan rasio antara persentase perubahan jumlah keluaran terhadap persentase perubahan jumlah masukan. Jika P = jumlah produk yang dihasilkan & X = jumlah faktor produksi yang digunakan, dan fungsi produksi P = fX maka elastisitas produksinya adalah ηp = %P = EP = lim = P′ . X %X EX X→0 P jika ηs > 1 maka elastik, jika ηs 1 berarti hubungan antara barang A dan barang B adalah kompetitif/substitutif saling menggantikan, di mana penurunan harga salah satu barang akan diikuti oleh kenaikan permintaan atas barang tersebut dan penurunan permintaan atas barang lainnya. Contoh Fungsi permintaan barang A terhadap barang komplementer ditunjukkan dengan persamaan QA = 2300 – 10PA + 5Ps + 0,4Y. Carilah elastisitas harga-permintaan, elastisitas silang-permintaan dan elastisitas penghasilan dari permintaan pada saat PA = 30, Ps = 10 dan Y = Diketahui Q = 2300 – 10PA + 5Ps + 0,4Y PA = 30 Ps = 10 Y = Ditanya εd….? εC….? εY….? Penyelesaian Q = 2300 – 10PA + 5Ps + 0,4Y Q = 2300 – 1030 + 510 + 0,45000 = 2300 – 300 + 50 + 2000 = Q = 2300 – 10PA + 5Ps + 0,4Y → P′A = -10 εd = Q′d . PA = -10 . 30 / = -10 0,007 = -0,07 in-elastis Q Q = 2300 – 10PA + 5Ps + 0,4Y → P′s = 5 εC = Q′s . Ps = 5 . 10 / 4050 = 5 0,002 = 0,01 in-elastis Q Q = 2300 – 10PA + 5Ps + 0,4Y → P′y = 0,4 εY = Y′ . Py = 0,4 . 5000 / 4050 = 0,4 1,23 = 0,49 in-elastis Q analisis ey = 0,49 0 sehingga membawa pengaruh positif terhadap barang A, di mana jumlah permintaan barang A dapat berkurang.
TURUNAN PARSIAL DALAM BIDANG EKONOMI October 12, 2009 Penerapan penggunaan turunan parsial matematika pada kehidupan sehari-hari sangat banyak. Hampir semua bidang ada. Namun pada saat ini saya akan menjelaskan penggunaan turunan parsial dalam bidang ekonomi. Pada bidang ekonomi fungsi turunan dipakai untuk mencari biaya marjinal, yaitu dengan cara menurunkannya dari persamaan biaya total. Bisa ditulis biaya marjinal = biaya total’. Para matematikawan mengenal biaya marjinal sebagai dc/dx, turunan C terhadap x. dengan demikian dapat didefinisikan harga marjinal sebagai dp/dx, pendapatan marjinal sebagai dR/dX, dan keuntungan marjinal sebagai dp/dx. Berikut contoh soalnya sebuah perusahaan mempunyai biaya 3200 + 3,25x – 0,0003x2 dengan jumlah persatuan x=1000. tentukan biaya rata-rata dan biaya marjinal? Penyelasaian biaya rata-rata = Cx/x = 3200+3,25x-0,0003x2 / X = 3200+3,25 1000-0,000310002 / 1000 = 6150 / 1000 = 6,15 Maka biaya rata-rata persatuan yaitu 6,15 x 1000 = biaya marjinal = dc/dx = 3,25-0,0006x = 3, 1000 = 2,65 maka biaya marjinalnya, 2,65 x 1000 = Pada x=1000 Dari hasil di atas, dapat dikatakan bahwa dibutuhkan untuk memproduksi 1000 barang pertama dan membutuhkan Rp. 2,65 untuk membuat 1 barang setelah barang yang ke 1000, hanya dibutuhkan Rp. 2650 untuk membuat 1000 barang yang sama. Demikian postingan saya tentang turunan parsial. Mohon maaf bila ada kesalahan Semoga postingan ini bermanfaat. Jika anda butuh postingan yang lain, anda bisa meninggalkan comment dan saya akan berusaha memposting postingan yang anda butuhkan. sumber
penerapan turunan dalam bidang ekonomi